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Abstract

We derive an explicit determinantal formula for the least squares (LS)
solution of an overdetermined system of linear equations. From this formula
it follows that the LS solution lies in the convex hull S of points, each of
which is a solution of a square subsystem of the whole system. The results

are extended to weighted LS solution; it is shown that the convex hull S in

which the solution must lie is independent of the weighting matrix.

Key words. Linear equations, Least squares problems, Convexity.
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1. Introduction

Consider the overdetermined system of linear equations

Ax =b (1.1)

where A is rn x n real matrix (m > n). The Least squares solution of (1.1)

is obtained from the solution of the normal equation

AT Ax =ATb (1.2)

The m x n system (1.1) contains ( ) squared n x n subsystems (obtained

by all possible choices of n rows of A out of m) which can be indexed iy
S{1,...,( )}: Pm,n. Let yi, be the solution of the i-th subsystem

corresponding to rows of A indexed by I4 = {ii,.. . , in} c Pm,, i.e.

A13 yi, = b, (1.3)

The solution to (1.3) exists and is unique if Ali -- detAij t 0.

In this paper we obtain a new representation of the least squares solution

x of (1.2) as follows:
X = >3 , byb (1.4)

jEP+:..

where

e ,n = {j Pm,n: AI r 0} and A,, =. A
ZjEP-tS. I)

The A1,'s are weights satisfying: Al, > 0 and +i'p., Agj = 1, hence from

the representation (1.4)

x E convex hull of {y i, : j E P+,n} (1.5)

We further show that the result (1.5) remains true for x being the solution

of a weighted least squares problem

AT MAx = ATMb (1.6)

where M is a positive definite diagonal matrix. For this case each yl, is still

the solution of (1.3), independent of M. This result is useful for numerical

niethuds whose (k + 1) st iterate Xk+1 is the solution of a system

* ATMk A Zk + = ATMk b (1.7)
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The iterative procedure (1.7) is in the heart of Karmakar's Linear Program-
ming method [4] and many related methods, see e.g. [3] and the references
therein. From our result it follows that, starting from any x0 , the next
iteration points X1, X2,..., all remain in the fixed compact polyhedral set
S = conv{y, : j E P+,n}. The fact is important for proving convergence
of the sequence {xk}.

2. Some notations and preliminary results

In this section we introduce the notations used in this paper and we prove
some results on the computation of determinants which will be necessary in
order to derive our main results.

We denote by Rmxn the space of m x n real matrices with m > n and
we assume that A E IR"'f with rank A = n. The transpose of A is denoted
AT. The matrix obtained from A by replacing column k with x e JRm is
denoted by:

A(k - x).

The minor of A of order p corresponding to rows indexed by ij and columns
indexed by kj is denoted by:

11 :2.. .tp
A k, k2 ... .kP

provided I < il <i 2 < ...< ip :< mand 1 < kl < k2 < ...< kp!< n. If A
is a square matrix (m = n)then the determinant of A is:

detA = A 1 2 ...n

An important formula for computing the determinant of the product of
two rectangular matrices is the so called Binet-Cauchy formula see e.g. [2].
Let D E J nfxm and E E JRm

g n be given matrices with m > n, and let

C := DE i.e. C E ]Rnxn. Then,

( 1 2 .. * i2 ... i

detC = ' D i) i2..n E ( i (2.1)
1<_i 1 <i 2 <... <im 2 2 .n

A direct application of the Binet-Cauchy formula leads to the following
result.

I4
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Lemma 2.1 Let A E lRr × " . Then,

det(AA T ) = [A ( il i2.."i)
l<il<i2< ... <i,<rM 2 .f

Proof. Let D = AT and E = A in (2.1). Then,

detC = det(AAT )= < mAT( 1 2"'n ) A( i 2 " ' i )1:5 <..<i <M i1 2 . . , 12.. in n

Since
A l T i 2...i n =A ( i i2 ... n

the result follows. E1

Remark 2.1 An alternative proof of Lemma 2.1 is given by Linnik, [5, p.
25).

The next result is a simple multiplication rule between two specific matrices.

Lenmma 2.2 For all b E R m and A E Rnx

AT A(k - ATb) = AT . A(k -, b)'

Proof. We prove the result for k = 1. Suppose that column 1 is replaced
in ATA by ATb, then the first column of ATA is

m
-arpbr, p= 1,..., n

r=1

Now replacing column 1 by b in A implies that the only column changed in
the product AT-A(1 -- b) is the first column, which is simply Fr'=, arsbr, s =

1,. .. ,n. Hence,
ATA(1 , ATb) = A .T A(1 , b)

Repeating the same argument for each column k 1,... m, the result fol-
lows. CD

In the sequel we will need the following notations. Let Nm,, denote all

subset of n integers out of {1,2,..., m}, (m > n), i.e.

N . ,n= (( ,,ii) in < il < ... < in< M }

'The . notation is used here to indicate that in the RHS we replace column k with the
vector b in the matrix A only

9 a nl n i m l N
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We order the members of Nm,, by increasing lexicographic order. Let 1,

be the j-th such index set, where j E Pm, := {1,2,..., (n Unless

otherwise specified, all the summations in the rest of the paper are taken

over j E Pmn. Using our new notations, Lemma 2.1 can be rewritten as:

A := detA A = E iZ
where Ai is the determinant of the n x n submatrix Al, (with rows indices

in I). The corresponding subvector of b E IRm is denoted bl E IR'

Lemmna 2.3 Let A E Jrxn and b E fR' . Then,

detAT A (k - ATb) = 1 det A1j detA 4 (k -* bl1 )

Proof. From Lemma 2.2 we have:

detA T A(k -- ATb) = detAT . A(k -- b)

By Binet-Cauchy formula:

detA .T A(k - b)= detAT . detA, (k -* bij)

and since detAT = detAid, the Lemma is proved. 0

3. Results

Consider the system of linear equations

Ax=b AE IRrnxn, b E I1 m , m> n (3.1)

We assume that A is full column rank, i.e. rankA = n. For each index set

Ij E Nm,n (j E Pm,n) there is an associated square subsystem of n linear
equations out of (3.1):

Aix = br

If Aj = detAI, $ 0 this system has a unique solution which we denote by

Y1, i.e.
Arjyj = b11, j E P,n {j E P,r, : Ali, : 0} (3.2)

Note that P+,$ j 0 since rankA = n.
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The least Euclidean norm solution of (3.1) (least squares solution for
short) is the unique solution of the so called normal equations: (see e.g. [1])

AT Ax = ATb (3.3)

The uniqueness follows from A := detATA A 0 which is implied by rankA =
n. The next result gives an explicit representation of the least squares
solution as a convex combination of the yi,'s.

Theorem 3.1 The least squares solution of the system (3.1) is given by

x= Z Ali yr,
iEP;:.n

A2

where A,, - L. Moreover, AI, > 0, and Ejp+., A12 = 1. Hence,

x Econv {YI, : Pm+,n

Proof. Since A = detAT A :A 0, the solution of (3.3) is unique and is given
by the Cramer rule (componentwise)

Xk detAT A(k- --+A T b) k (3.4)xk = detA T A

By Lemma 2.3, (3.4) can be written as:

k detAj, • detAI, (k -- bt
= detATA

(35)
A

where

Ak (b) := detAj,(k -, b,;)

Defining Arj := z4/A, (3.5) can be written as:

Xk= A , " k = 1,...,n (3.6)

jEP+ .,. j

Consider now the solution of the linear equation (3.2):

Al i yt , = bt, for j EP+



6

Using Cramer rule , the solution is given componentwiqP by t
k, detAi,(k - bi.) _ Az,(b)

__1_Alik_=_11_n (3.7)
detAtj 

'

Combining (3.6) and (3.7) it follows that

X= Aliyk,, k l..n

jEPt..

Furthermore, by Lemma 2.1, A = ZjEP -. -j p+ A, hence

A I,=-Y >0, and 1 AI1 =.

jEPz.,

Theorem 3.1 can be generalized to the solution of a weighted least-squares
problem. Let M E Rm"m be the diagonal matrix

M = diag(jIA,...,. 4,,)

with diagonal elements jiA > 0, i = 1,...,m. The solution of the weighted

least-squares problem with weight matrix M is obtained by solving the nor-
mal equation:

AT MA= AT Mb (3.8)

Since M is positive definite (3.8) can be written as:

ATMI/ 2 M/ 2 A = AT M112M1/ 2b (3.9)

where
M 112 = diag(\/_i1 ,. 'V',i,)

Define A = M1/ 2 A, b - M 1/ 2 b, then since (MI/ 2 )T - M I / 2, (3.9) is
equivalent to

ATAx = ,Tr (3.10)

i.e. x is the least squares solution of the linear equation

AX~

Applying Theorem 3.1 we thus obtain

jEP,..
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where y j solves

a n d d e t A ,, ( 3 .1 1 )
- .-_ det 2 A i,

We show below that the determinants zq and .a can be expressed explicitly

in terms of Al, A and pj, and that the coefficients 1,. can be expressed
in terms of Al and Mj. Therefore the least squares solution of the weighted
problem can be obtained directly from the least norm solution of the orig-
inal linear equation Ax = b by a simple scaling of the convex combination
coefficients Ali.

Theorem 3.2 The weighted least squares solution of (3.8) is given by

where yj1 solves (3.2), and where

j 7r~i', A 3E P+

with
, 1/2

In particular, x E cony {Y1 :i e +

Proof. By definition
=MI/2 A

and thus
Ai, M 2 A (3.12)

where M"12 is the n x n diagonal matrix with elements /k > 0, k E Ij, j E
Ii

Pmn. Using (3.12) we compute:

Al= detM1/ 2 " detA 3
= ( I-J .12,

]Ui/2)AIj

jEPm.n

= TiiAi
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Substituting the above in (3.11) and using AI, as given in Theorem 3.1 we (
obtain

r 2 A2Ii __i 
2i

ir~ 2 1-- "I" 
(3.13)

Now using (3.7) we have for k = 1,..., n

k_ (b) IA (b)
- by (3.13) (3.14)

where

zI4 (b) = detAj, (k --*
1

= detM"2 .detAx, (k -jj) (3.15)

= k (b) (3.16)

The equality (3.15) following from the fact that for any diagonal matrix
D e IRn' n and any matrix F E ]Rn n and vector c E IRn the following
identity holds:

DF(k - Dc) = D. F(k - c).

Substituting (3.16) in (3.14) it follows that k = yk , for all k = 1,...,n
and the proof is complete. M

Remark 3.1 The important fact to observe is that the yb's depend only
on the data A, b and not on the matrix M, hence the weighted least squares
solution is inside the compact polyhedral convex set cony {yj, : j E P,?,,}
which is independent of the weighting matrix M.
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